Mapping Wildland Fire Potential for the Conterminous United States

Twelfth Biennial USDA Forest Service Remote Sensing Applications Conference (RSAC) – Salt Lake City, Utah April 15 – 17, 2008

Jim Menakis

Fire Modeling Institute Missoula Fire Science Laboratory Rocky Mountain Research Station Missoula, MT

Increased Acres Burned by Wildfires

Shifting Demographics

More People are Moving into the Wildland Interface...

With little Understanding of their Environment...

And...

Sometimes resulting in Catastrophic Consequences...

Hi Meadow Fire (2000): Pine Valley, Colorado Photo by Andrea Booher/FEMA News Photo

Structures Lost to Wildfire 1999-2006

Recent Fire Seasons Entire U.S.

2000: 8.5 million acres \$1.3 billion

- 2001: 3.5 million acres \$918 million
- 2002: 7.0 million acres \$1.6 billion
- 2003: 5.0 million acres \$1.3 billion
- 2004*: 7.7 million acres \$?? billion

*as of Sept 29, 2004

GAO Reports – Recent History

- 1999 A cohesive strategy is needed to address catastrophic wildland fire threats (W. U.S.) (GAO/RCED-99-65)
- 2001 Federal agencies not organized to effectively and efficiently implement the National Fire Plan (GAO-01-1022T)
- 2002 Improved planning will help agencies better identify fire fighting preparedness needs (GAO-02-158)
 - Reducing the threat of wildland fires requires sustained and coordinated effort (GAO-02-843)
 - Leadership and accountability needed to reduce risks to communities and resources (GAO-02-259)
- 2003 Additional actions required to better identify and prioritize lands needing fuels reduction (GAO-03-805)

Technologies hold promise for wildland fire management, but challenges remain (GAO-03-1047)

2004 Wildland Fires: FS & BLM need better information & a systematic approach for assessing the risk of environmental effects (GAO-04-705)

Geospatial Information: Better coordination needed to identify and reduce duplicative investments (GAO-04-703)

Fire Risk Map – Possible? What The Client Wanted

What's needed to map Risk?

Fire Risk Map – Possible? What The Client Wanted

Fire Risk Map – Possible? What The Client Wanted

What's needed to map Risk? **Chreat** Potential **Probability**

Map Wildland Fire Potential

Objective/Constraints

- · Quickly
- Conterminous for the United States
- All Lands
 - Forest, Shrubs, and Grass
- Use Existing Data Products
- Temporary Product until LANDFIRE is available

Data Supports – National Level Wildland Fire Potential

- Fuel Budget Allocation Process
 (Ecosystem Management Decision Support system)
 - Forest Service
 - Prioritize by Region and Forests
 - > Department of Interior
 - · BIA, BLM, FWS, NPS
 - Prioritize by Agency and Region
- USFS State & Private Forest Redesign
 - (Spatial Assessment Model Web based)
 - Prioritize by National, Regional, & State

Wildland Fire Potential

Fuel Potential

Surface Fire Potentials

Description:

Surface fire behavior under extreme weather conditions

Base Data:

Fuels Characteristic Classification System (FCCS) - Version 1.2

- Classification of complete fuelbed
- Classifies each stratum Canopy, Shrub, Duff, etc.
- Modeling of fire characteristics
- Pacific Northwest Research Station, USFS

Processing:

Model run under very dry conditions

Predicted Surface Fire Rate of Spread

Predicted Surface Fire Flame Length

Surface Fire Potential

Surface Fire Potential

Wildland Fire Potential

Fuel Potential

Crown Fire Potentials

Description:

Crown fire behavior under extreme weather conditions (Intensity, Speed, & Fire Brands)

Base Data:

Forests: FIA Forest Cover Types

- MODIS satellite
- · FIA & RSAC
- Range: Coarse Scale Cover Types
 - AVHRR satellite
 - Missoula Fire Science Lab, RMRS

Processing:

Relative assignments to cover type layers by fire behavior expert

Crown Fire Potential

Wildland Fire Potential

Fuel Potential

Fuel Potential

Wildland Fire Potential

Weather Potential

Relative Energy Release Component

Description:

Average Number of Days per Year Relative Energy Release Component (ERC) is above 95%

Base Data:

Daily Average Relative ERC

- · 1980 2005
- Derived from Weather Stations
- Interpolated using terrain correction
- Missoula Fire Science Lab, RMRS

Processing:

- Select Relative ERC > 95%
- \cdot Count the number of days

Average Number of Days per Year Relative ERC > 95%

Fire Weather Zones

- Based on Fire Weather Handbook
- Mapped by grouping Ecoregion Subsections

Fire Seasons

Wildland Fire Potential

Extreme Fire Weather

Description:

Average number of days a year that experience extreme fire weather

Base Data:

Weather Stations

- Hourly observations: 1982 to 1997
- Temp, wind, & humidity thresholds
- Fires that destroyed many structures
- Interpolated using terrain correction
- Missoula Fire Science Lab, RMRS

Processing:

• Average the number of days

Extreme Fire Weather

Over 500 Weather Stations 1982-1997 (16 Years) -- Reported Hourly

Extreme Fire Weather Potential

Wildland Fire Potential

Fire Weather Potential

Fire Weather Potential

Wildland Fire Potential

Fuel & Fire Weather Potential

Fuels and Fire Weather Potential

Wildland Fire Potential

Fire Occurrence

Description:

Number of Fire Starts

Base Data:

- · 1980 to 2003
- All federal lands
- State & private lands with shared fire fighting responsibility
- · Compiled by BLM (Denver Office)

Processing:

- Two Data Sets:
 - * All fires > 0.10 acres
 - * Large fires > 500 acres
- Explored summarizing to different units
 - > Standardized to per million acres

All Fires (Greater then 1/10 Acres)

Federal and State/Private fires where fire fighting resources are shared. 1980 - 2003

Legend

• Fires 1/10 acre or greater

Large Fires (Greater then 500 Acres)

Wildland Fire Potential

Summarized to the County Fire Occurrence

Fire Occurrence – Summarized to County

Fire Weather Zones

- Based on Fire Weather Handbook
- Mapped by grouping Ecoregion Subsections

Summarized to Weather Zones Fire Occurrence

Ignition Potential

Wildland Fire Potential Final Steps

- Adjust Fuel and Fire Weather Potential
 > Based on Ignition Potential
 - > Increase SE Fuel & Weather Potential by 1
- Add additional land forms (water, barren...)

Wildland Fire Potential

How Good Is It

- Does it Pass the Straight Face Test
- National Scale
 Should not be used at finer scale
- Shows relative changes
- Temporary product

Where Do We Go from Here

- Wait for LANDFIRE National
- Calculate Potential Using:
 FSPRO Model
 FIREHARM Model
- Improve Weather Inputs
- Measure Potential Based on Empirical Data

