Wildfire Hazard Potential (WHP) for the conterminous United States (270-m GRID), version 2018 continuous

Metadata:

- Identification_Information
- <u>Data_Quality_Information</u>
- <u>Spatial_Data_Organization_Information</u>
- <u>Spatial_Reference_Information</u>
- Entity_and_Attribute_Information
- <u>Distribution_Information</u>
- <u>Metadata_Reference_Information</u>

Identification_Information:

Citation:

Citation_Information:

Originator: Dillon, Gregory K. Publication_Date: 2018 Title: Wildfire Hazard Potential (WHP) for the conterminous United States (270-m GRID), version 2018 continuous Edition: 2nd Geospatial_Data_Presentation_Form: raster digital data Publication_Information:

Publication_Place: Fort Collins, CO Publisher: Forest Service Research Data Archive

Online_Linkage: https://doi.org/10.2737/RDS-2015-0047-2

Description:

Abstract:

Federal wildfire managers often want to know, over large landscapes, where wildfires are likely to occur and how intense they may be. To meet this need we developed a map that we call wildfire hazard potential (WHP) – a raster geospatial product that can help to inform evaluations of wildfire risk or prioritization of fuels management needs across very large spatial scales (millions of acres). Our specific objective with the WHP map was to depict the relative potential for wildfire that would be difficult for suppression resources to contain. To create the 2018 version, we built upon spatial estimates of wildfire likelihood and intensity generated in 2016 with the Large Fire Simulation system (FSim), as well as spatial fuels and vegetation data from LANDFIRE 2012 and point locations of fire occurrence from FPA (ca. 1992 – 2013). With these datasets as inputs, we produced an index of WHP for all of the conterminous United States at 270 meter resolution. We present the final WHP map as continuous integer values. On its own, WHP is not an explicit map of wildfire threat or risk, but when paired with spatial data depicting highly valued resources and assets such as structures or powerlines, it can approximate relative wildfire risk to those specific resources and assets. WHP is also not a forecast or wildfire outlook for any particular season, as it does not include any information on current or forecasted weather or fuel moisture conditions. It is instead intended

for long-term strategic fuels management.

Purpose:

This dataset is the continuous wildfire hazard potential (WHP). It is intended for use in strategic wildland fuels and land management planning at mostly regional to national scales.

Supplemental_Information:

This data publication is a second edition. The first edition (https://doi.org/10.2737/RDS-2015-0047) represents WHP mapped in 2014, depicting landscape conditions as of 2010. This second edition is the 2018 version, and depicts landscape conditions as of 2012. (See

\Supplements\WHP2014_to_2018_ChangeSummary.pdf for a summary of the changes between the first and second editions of these data.)

To check for the latest version of the WHP geospatial data and map graphics, as well as documentation on the mapping process, see: https://www.firelab.org/project/wildland-fire-potential.

Details about the Wildfire Hazard Potential mapping process can be found in Dillon et al. 2015. Steps described in this paper about weighting for crown fire potential have been dropped in the 2018 version due to changes to the FSim modeling products used as the primary inputs to WHP mapping.

The FSim products used to create the 2018 version of WHP can be found here in Short et al. 2016.

Dillon, Gregory K.; Menakis, James; Fay, Frank. 2015. Wildland fire potential: A tool for assessing wildfire risk and fuels management needs. In: Keane, Robert E.; Jolly, Matt; Parsons, Russell; Riley, Karin. Proceedings of the large wildland fires conference; May 19-23, 2014; Missoula, MT. Proc. RMRS-P-73. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. p. 60-76. https://www.fs.usda.gov/treesearch/pubs/49429

Short, Karen C.; Finney, Mark A.; Scott, Joe H.; Gilbertson-Day, Julie W.; Grenfell, Isaac C. 2016. Spatial dataset of probabilistic wildfire risk components for the conterminous United States. Fort Collins, CO: Forest Service Research Data Archive. https://doi.org/10.2737/RDS-2016-0034

Time_Period_of_Content:

Time_Period_Information:

Single_Date/Time:

Calendar_Date: 2012

Currentness_Reference: Ground condition

Status:

Progress: Complete
Maintenance_and_Update_Frequency: As needed

Spatial_Domain:

Description_of_Geographic_Extent: conterminous United States Bounding_Coordinates:

> West_Bounding_Coordinate: -127.972202 East_Bounding_Coordinate: -65.258792

North_Bounding_Coordinate: 51.632799 South Bounding Coordinate: 22.765684

Keywords:

Theme:

Theme_Keyword_Thesaurus: ISO 19115 Topic Category *Theme_Keyword:* environment

Theme:

Theme_Keyword_Thesaurus: National Research & Development Taxonomy Theme_Keyword: Ecology, Ecosystems, & Environment Theme_Keyword: Fire Theme_Keyword: Fire detection Theme_Keyword: Fire ecology Theme_Keyword: Fire effects on environment Theme_Keyword: Fire suppression, pre-suppression Theme_Keyword: Prescribed fire Theme_Keyword: Environment and People Theme_Keyword: Forest Management Theme_Keyword: Landscape management

Theme:

Theme_Keyword_Thesaurus: None Theme_Keyword: burn probability Theme_Keyword: hazard Theme_Keyword: fuels management Theme_Keyword: fire supression Theme_Keyword: fire likelihood Theme_Keyword: fire planning Theme_Keyword: risk assessment Theme_Keyword: wildland fire potential Theme_Keyword: wildlire hazard potential

Place:

Place_Keyword_Thesaurus: None Place_Keyword: conterminous United States Place_Keyword: United States Place_Keyword: CONUS

Access Constraints: None

Use Constraints:

These data were collected using funding from the U.S. Government and can be used without additional permissions or fees. If you use these data in a publication, presentation, or other research product please use the following citation:

Dillon, Gregory K. 2018. Wildfire Hazard Potential (WHP) for the conterminous United States (270-m GRID), version 2018 continuous. 2nd Edition. Fort Collins, CO: Forest Service Research Data Archive. https://doi.org/10.2737/RDS-2015-0047-2

Please note: This dataset is the product of modeling, and as such carries an inherent degree of error and

uncertainty. Users must read and fully comprehend the metadata and other available documentation prior to data use. Users should acknowledge the Originator when using this dataset as a source. Users should share data products developed using the source dataset with the Originator. No warranty is made by the Fire Modeling Institute (FMI) or USDA Forest Service as to the accuracy, reliability, or completeness of these data for individual use or aggregate use with other data, or for purposes not intended by FMI. Inputs to the WHP map, and therefore the WHP map as well, are intended to support 1) national (all states) strategic planning, 2) regional (single large states or groups of smaller states) planning, and 3) strategic and possibly tactical planning for large sub-regional landscapes (including significant portions of states or multiple federal administrative entities). The applicability of the WHP map to support fire and land management planning on smaller areas will vary by location and specific intended use. Further investigation by local and regional experts should be conducted to inform decisions regarding local applicability. It is the sole responsibility of the local user, using product metadata and local knowledge, to determine if and/or how the WHP map can be used for particular areas of interest. The WHP map is not intended to replace local products where they exist, but rather serve as a back-up by providing wall-to-wall cross-boundary data coverage. It is the responsibility of the user to be familiar with the value, assumptions, and limitations of WHP map. Managers and planners must evaluate the WHP map according to the scale and requirements specific to their needs. Spatial information may not meet National Map Accuracy Standards. This information may be updated without notification.

Point_of_Contact:

Contact_Information:

Contact_Organization_Primary:

Contact_Organization: USDA Forest Service, Fire Modeling Institute (FMI)

Contact Address:

Address_Type: mailing and physical Address: Missoula Fire Sciences Laboratory Address: 5775 US Hwy 10 W City: Missoula State_or_Province: MT Postal_Code: 59808 Country: USA

Contact_Voice_Telephone: 406-329-4800 Contact_Electronic_Mail_Address: fmi@fs.fed.us Contact Instructions: https://www.firelab.org/fmi

Data_Set_Credit:

Funding for this project provided by USDA Forest Service, Fire and Aviation Management. Funding also provided by USDA Forest Service, Fire Modeling Institute, which is part of the Rocky Mountain Research Station's Fire, Fuel and Smoke Science Program.

Native Data Set Environment:

Version 6.2 (Build 9200) ; Esri ArcGIS 10.5.1.7333 Cross Reference:

Citation_Information:

Originator: Dillon, Gregory K. Publication_Date: 2015 Title: Wildland Fire Potential (WFP) for the conterminous United States (270-m GRID), version 2012 continuous Geospatial_Data_Presentation_Form: raster digital data Publication Information:

Publication_Place: Fort Collins, CO Publisher: Forest Service Research Data Archive

Online Linkage: https://doi.org/10.2737/RDS-2015-0045

Cross_Reference:

Citation_Information:

Originator: Dillon, Gregory K. Publication_Date: 2015 Title: Wildfire Hazard Potential (WHP) for the conterminous United States (270-m GRID), version 2014 continuous Edition: 1st Geospatial_Data_Presentation_Form: raster digital data Publication_Information:

Publication_Place: Fort Collins, CO Publisher: Forest Service Research Data Archive

Online Linkage: https://doi.org/10.2737/RDS-2015-0047

Cross_Reference: Cross_Reference:

Citation_Information:

Citation_Information:

Originator: Keane, Robert E. Originator: Jolly, Matt Originator: Parsons, Russell Originator: Riley, Karin Publication_Date: 2015 Title: Proceedings of the large wildland fires conference Geospatial_Data_Presentation_Form: conference proceedings Series_Information: Series_Name: Proceedings Issue Identification: Proc. RMRS-P-73

Publication_Information:

Publication_Place: Fort Collins, CO Publisher: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station

Other_Citation_Details: May 19-23, 2014; Missoula, MT; 345 p. Online Linkage: https://www.treesearch.fs.fed.us/pubs/49166

Back to Top

Data_Quality_Information:

Attribute_Accuracy:

Attribute Accuracy Report:

WHP, by its nature, is an abstract index of fire potential. Its accuracy, therefore, cannot be quantitatively measured. It is intended to be a relative measure of wildfire hazard potential. The FSim burn probability (BP) used as a primary input to the WHP map was objectively evaluated and calibrated within 128 distinct regions of contemporary wildfire activity (pyromes) across CONUS, using historic reference data on fire size distributions and annual area burned. More information on the FSim modeling outputs can be found in Short et al. 2016 (https://doi.org/10.2737/RDS-2016-0034). Some LANDFIRE fuels and vegetation data used as inputs have also been evaluated for efficacy and calibrated to meet the objectives of LANDFIRE. More information can be found at: https://www.landfire.gov/lf_evaluation.php.

Quantitative_Attribute_Accuracy_Assessment:

Attribute_Accuracy_Explanation: Quantitative accuracy cannot be evaluated.

Logical_Consistency_Report:

Pixel values in this grid should be within the range of 0 to 100,000. Values in this grid were used to create the classified version of 2018 WHP, using the following class breaks: very low ≤ 61 ; low ≥ 61 and ≤ 178 ; moderate ≥ 178 and ≤ 489 ; high ≥ 489 and ≤ 1986 ; very high ≥ 1986 . The continuous and classified WHP products should be logically consistent with each other.

Completeness_Report:

All pixels that are part of the land and water of the conterminous United States have valid non-negative values. Zero values are valid and typically represent non-burnable land cover (water, snow/ice, developed, agriculture).

Lineage:

Source_Information:

Source_Citation:

Citation_Information:

Originator: Short, Karen C. Originator: Finney, Mark A. Originator: Scott, Joe H. Originator: Gilbertson-Day, Julie W. Originator: Grenfell, Isaac C. Publication_Date: 2016 Title: Spatial dataset of probabilistic wildfire risk components for the conterminous United States Geospatial_Data_Presentation_Form: raster digital data Publication_Information:

Publication_Place: Fort Collins, CO *Publisher:* Forest Service Research Data Archive

Online Linkage: https://doi.org/10.2737/RDS-2016-0034

Type_of_Source_Media: online *Source Time Period of Content:*

Time_Period_Information:

Single Date/Time:

Calendar_Date: 20101231 *Time of Day:* 120000

Source_Currentness_Reference: ground condition

Source Citation Abbreviation:

FSim Burn Probability (BP) [bp 20160830]

Source Contribution:

Burn probability modeled with FSim was a primary spatial input to calculating the large wildfire potential. This layer provided information about the overall probability of any 270 meter pixel experiencing a large fire of any intensity.

Source_Information:

Source_Citation:

Citation_Information:

Originator: Short, Karen C. Originator: Finney, Mark A. Originator: Scott, Joe H. Originator: Gilbertson-Day, Julie W. Originator: Grenfell, Isaac C. Publication_Date: 2016 Title: Spatial dataset of probabilistic wildfire risk components for the conterminous United States Geospatial_Data_Presentation_Form: raster digital data Publication_Information:

Publication_Place: Fort Collins, CO *Publisher:* Forest Service Research Data Archive

Online_Linkage: https://doi.org/10.2737/RDS-2016-0034

Source Time Period of Content:

Time Period Information:

Single Date/Time:

Calendar_Date: 20101231 *Time of Day:* 120000

Source_Currentness_Reference: ground condition

Source Citation Abbreviation:

FSim FILs ([fil1_20160830], fil2_20160830], fil3_20160830], fil4_20160830], fil5_20160830], fil6_20160830])

Source_Contribution:

Conditional flame lengths modeld with FSim were a primary spatial input to calculating the large wildfire potential. This set of layers provided information about the conditional probability of particular fire intensity levels (i.e., likelihood of a particular intensity level, given a fire) for every 270 meter pixel.

Source_Information:

Source_Citation:

Citation Information:

Originator: Short, Karen C. Publication_Date: 2015 Title: Spatial wildfire occurrence data for the United States, 1992-2013 [FPA_FOD_20150323] Edition: 3rd Edition Geospatial_Data_Presentation_Form: vector digital data and database Publication_Information:

Publication_Place: Fort Collins, CO *Publisher:* Forest Service Research Data Archive

Other Citation Details:

Additional information is available in: Short, Karen C. 2014. A spatial database of wildfires in the United States, 1992-2011. Earth Systems Science Data 6:1-27. https://doi.org/10.5194/essd-6-1-2014 Online Linkage: https://doi.org/10.2737/RDS-2013-0009.3

Type_of_Source_Media: online *Source Time Period of Content:*

Time Period Information:

Range of Dates/Times:

Beginning_Date: 19920101 Beginning_Time: 120000 Ending_Date: 20121231 Ending_Time: 120000 Source_Currentness_Reference: ground condition

Source_Citation_Abbreviation:

FPA FOD

Source_Contribution:

The FPA point fire occurrence database (FPA FOD) was used to create a surface of small wildland fire potential. It was also used in the process of creating the burn probability (BP) and fire intensity level (FIL) rasters.

Source_Information:

Source_Citation:

Citation_Information:

Originator: LANDFIRE, U.S. Department of the Interior, Geological Survey
Publication_Date: 20151231
Publication_Time: 120000
Title:
LANDFIRE 1.3.0 40 Scott and Burgan Fire Behavior Fuel Models layer
Edition: 1.3.0
Geospatial_Data_Presentation_Form: raster digital data
Other_Citation_Details:
 Scott, Joe H.; Burgan, Robert E. 2005. Standard fire behavior fuel models: a
 comprehensive set for use with Rothermel's surface fire spread model. Gen. Tech. Rep.
 RMRS-GTR-153. Fort Collins, CO: U.S. Department of Agriculture, Forest Service,
 Rocky Mountain Research Station. 72 p. https://doi.org/10.2737/rmrs-gtr-153
Online_Linkage: https://landfire.cr.usgs.gov/viewer/
Online_Linkage: https://www.landfire.gov/fuel.php

Type_of_Source_Media: online *Source Time Period of Content:*

Time_Period_Information:

Single Date/Time:

Calendar_Date: 20101231 *Time of Day:* 120000

Source_Currentness_Reference: ground condition

Source_Citation_Abbreviation: LANDFIRE FBFM40

Source_Contribution:

The LANDFIRE Fire Behavior Fuel Models layer was a primary input to the FSim BP and FIL datasets. It was used as an input at various points in the WHP mapping process, including spatially applying resistance to control weights and bringing in non-burnable and water.

Source_Information:

Source Citation:

Citation_Information:

Originator: LANDFIRE, U.S. Department of the Interior, Geological Survey
Publication_Date: 20151231
Publication_Time: 120000
Title:
LANDFIRE 1.3.0 Existing Vegetation Type layer
Edition: 1.3.0
Geospatial_Data_Presentation_Form: raster digital data
Other_Citation_Details:
Rollins, Matthew G. 2009. LANDFIRE: a nationally consistent vegetation, wildland fire, and fuel assessment. International Journal of Wildland Fire 18:235-249.
https://doi.org/10.1071/wf08088
Online_Linkage: https://landfire.gov/vegetation.php
Online_Linkage: https://landfire.gov/vegetation.php

Type_of_Source_Media: online *Source_Time_Period_of_Content:*

Time_Period_Information:

Single_Date/Time:

Calendar_Date: 20101231 *Time of Day:* 120000

Source_Currentness_Reference: ground condition

Source_Citation_Abbreviation:

LANDFIRE EVT Source Contribution:

The LANDFIRE Existing Vegetation Type layer was used to spatially apply resistance to control weights to create the final WFP.

Process Step:

Process Description:

Step 1: Multiply overall burn probability for each flame length to get actual probabilities for each flame length class.

Source Used Citation Abbreviation:

FSim FILs ([fil1_20160830], fil2_20160830], fil3_20160830], fil4_20160830], fil5_20160830], fil6_20160830])

Source_Used_Citation_Abbreviation:

FSim Burn Probability (BP) [bp_20160830] Process Date: 20180606

Process_Step:

Process_Description:

Step 2: Weight the probabilities in each flame length class by the potential hazard they represent and sum them to derive a measure of large wildfire potential. *Process Date:* 20180606

Process Step:

Process_Description:

Step 3: Create a separate surface of small wildfire potential based on ignition locations for fires smaller than 300 acres (generally not accounted for in FSim).

Source_Used_Citation_Abbreviation: FPA FOD Process Date: 20180606

Process_Step:

Process Description:

Step 4: Integrate the large wildfire potential created in process steps 1-2 with the small wildfire potential created in process step 3. This was done by weighting each according to its relative contribution to total wildfire potential, then adding the weighted values.

Process_Date: 20180606

Process_Step:

Process Description:

Step 5: Apply a set of resistance to control weights based on fireline construction rates in different fuel types

Source_Used_Citation_Abbreviation: LANDFIRE EVT Source_Used_Citation_Abbreviation: LANDFIRE FBFM40 Process_Date: 20180606

Process_Step:

Process_Description:

Step 6: Convert WHP values to integers by multiplying by 10,000 and rounding to the nearest whole number (preserves four decimal places of precision). *Process Date:* 20180606

Back to Top

Spatial_Data_Organization_Information:

Direct_Spatial_Reference_Method: Raster *Raster_Object_Information:*

Raster_Object_Type: Grid Cell Row_Count: 10803 Column_Count: 17133

Back to Top

Spatial_Reference_Information:

Horizontal_Coordinate_System_Definition:

Planar:

Map_Projection:

Map_Projection_Name: NAD 1983 Albers

Albers Conical Equal Area:

Standard_Parallel: 29.5 Standard_Parallel: 45.5 Longitude_of_Central_Meridian: -96.0 Latitude_of_Projection_Origin: 23.0 False_Easting: 0.0 False_Northing: 0.0

Planar_Coordinate_Information:

Planar_Coordinate_Encoding_Method: coordinate pair *Coordinate_Representation:*

Abscissa_Resolution: 0.000000037527980722984474 *Ordinate Resolution:* 0.000000037527980722984474

Planar Distance Units: meter

Geodetic_Model:

Horizontal_Datum_Name: D North American 1983 Ellipsoid_Name: GRS 1980 Semi-major_Axis: 6378137.0 Denominator_of_Flattening_Ratio: 298.257222101

Back to Top

Entity and Attribute Information:

Detailed_Description:

Entity_Type:

Entity_Type_Label: whp2018_cnt.vat *Entity_Type_Definition:* Continuous values of Wildfire Hazard Potential *Entity_Type_Definition_Source:* None

Attribute:

Attribute_Label: Rowid Attribute_Definition: Internal feature number Attribute_Definition_Source: ESRI Attribute_Domain_Values:

> *Unrepresentable_Domain:* Sequential unique whole numbers that are automatically generated.

Attribute:

Attribute_Label: VALUE *Attribute_Definition:*

Continuous integer WHP index values (0=low, 100,000=high) Attribute_Definition_Source: None Attribute_Domain_Values:

Range Domain:

Range_Domain_Minimum: 0 Range_Domain_Maximum: 98762 Attribute_Units_of_Measure: unitless Attribute_Measurement_Resolution: 1

Attribute:

Attribute_Label: COUNT Attribute_Definition: Number of pixels in each WHP value. Attribute_Definition_Source: ESRI Attribute_Domain_Values:

> *Unrepresentable_Domain:* Number of pixels in each WHP value.

Overview_Description:

Entity and Attribute Overview:

This dataset represents wildlfire hazard potential (WHP) as continuous integer values on a scale from 0 (low) to 100,000 (high).

Also included in the download are the following files:

\Supplements\whp_2018_continuous_lettersize.jpg: JPEG image file containing a letter sized map of continuous wildfire hazard potential (WHP) plus non-burnable lands and water. (Resolution: 300 dots per inch [DPI] at 8.5x11 inches)

\Supplements\whp_2018_continuous_midsize.jpg: JPEG image file containing a letter sized map of continuous wildfire hazard potential (WHP) plus non-burnable lands and water. (Resolution: 96 DPI at 44x34 inches, scales well for printing anything smaller than poster size)

\Supplements\whp_2018_continuous_postersize.jpg: JPEG image file containing a letter sized map of continuous wildfire hazard potential (WHP) plus non-burnable lands and water. (Resolution: 200 DPI at 44x34 inches)

\Supplements\WHP2014_to_2018_ChangeSummary.pdf: Adobe Acrobat PDF/a file containing a summary of the changes between the 2014 and 2018 Wildfire Hazard Potential (WHP) data publications.

Entity and Attribute Detail Citation:

Dillon, Gregory K.; Menakis, James; Fay, Frank. 2015. Wildland fire potential: A tool for assessing wildfire risk and fuels management needs. In: Keane, Robert E.; Jolly, Matt; Parsons, Russell; Riley, Karin. Proceedings of the large wildland fires conference; May 19-23, 2014; Missoula, MT. Proc. RMRS-P-73. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. p. 60-76. https://www.fs.usda.gov/treesearch/pubs/49429

Back to Top

Distribution Information:

Distributor:

Contact_Information:

Contact_Organization_Primary:

Contact Organization: USDA Forest Service, Research and Development

Contact_Position: Research Data Archivist *Contact_Address:*

Address_Type: mailing and physical Address: 240 West Prospect Road City: Fort Collins State_or_Province: CO Postal_Code: 80526 Country: USA

Contact_Voice_Telephone: see Contact Instructions *Contact Instructions:* This contact information was current as of October 2018. For current information see Contact Us page on: https://doi.org/10.2737/RDS.

Resource_Description: RDS-2015-0047-2

Distribution_Liability:

Metadata documents have been reviewed for accuracy and completeness. Unless otherwise stated, all data and related materials are considered to satisfy the quality standards relative to the purpose for which the data were collected. However, neither the author, the Archive, nor any part of the federal government can assure the reliability or suitability of these data for a particular purpose. The act of distribution shall not constitute any such warranty, and no responsibility is assumed for a user's application of these data or related materials.

The metadata, data, or related materials may be updated without notification. If a user believes errors are present in the metadata, data or related materials, please use the information in (1) Identification Information: Point of Contact, (2) Metadata Reference: Metadata Contact, or (3) Distribution Information: Distributor to notify the author or the Archive of the issues. *Standard Order Process:*

Digital Form:

Digital Transfer Information:

Format_Name: GRID Format_Version_Number: see Format Specification Format_Specification: ESRI ArcGIS 10.5.1 digital raster file File_Decompression_Technique: Files zipped using 7-Zip 18.01

Digital_Transfer_Option:

Online Option:

Computer_Contact_Information:

Network_Address:

Network_Resource_Name: https://doi.org/10.2737/RDS-2015-0047-2

Digital_Transfer_Option:

Online_Option:

Computer_Contact_Information:

Network_Address:

Network_Resource_Name: <u>https://www.firelab.org/project/wildfire-hazard-potential</u>

Digital_Form:

Digital_Transfer_Information:

Format_Name: JPG Format_Version_Number: see Format Specification Format_Specification: JPG image file File_Decompression_Technique: Files zipped using 7-Zip 18.01

Digital_Transfer_Option:

Online_Option:

Computer_Contact_Information:

Network Address:

Network_Resource_Name: https://doi.org/10.2737/RDS-2015-0047-2

Digital_Transfer_Option:

Online_Option:

Computer_Contact_Information:

Network_Address:

Network_Resource_Name: <u>https://www.firelab.org/project/wildfire-hazard-potential</u>

Fees: None

Back to Top

Metadata_Reference_Information:

Metadata_Date: 20181010 Metadata_Contact: *Contact_Information:*

Contact_Organization_Primary:

Contact_Organization: USDA Forest Service, Fire Modeling Institute (FMI) Contact Person: Greg Dillon

Contact_Position: Spatial Fire Analyst *Contact_Address:*

Address_Type: mailing and physical Address: Missoula Fire Sciences Laboratory City: Missoula State_or_Province: MT Postal_Code: 59808 Country: USA

Contact_Voice_Telephone: 406-329-4800 Contact_Electronic_Mail_Address: fmi@fs.fed.us Contact Instructions: https://www.firelab.org/fmi

Metadata_Standard_Name: FGDC Content Standard for Digital Geospatial Metadata Metadata_Standard_Version: FGDC-STD-001-1998 Metadata_Time_Convention: local time

Back to Top